3.68 \(\int \frac{\sqrt{e+f x^2}}{(a+b x^2) (c+d x^2)^{3/2}} \, dx\)

Optimal. Leaf size=209 \[ \frac{b e^{3/2} \sqrt{c+d x^2} \Pi \left (1-\frac{b e}{a f};\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right )|1-\frac{d e}{c f}\right )}{a c \sqrt{f} \sqrt{e+f x^2} (b c-a d) \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}}-\frac{\sqrt{d} \sqrt{e+f x^2} E\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{c f}{d e}\right )}{\sqrt{c} \sqrt{c+d x^2} (b c-a d) \sqrt{\frac{c \left (e+f x^2\right )}{e \left (c+d x^2\right )}}} \]

[Out]

-((Sqrt[d]*Sqrt[e + f*x^2]*EllipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (c*f)/(d*e)])/(Sqrt[c]*(b*c - a*d)*Sqrt[
c + d*x^2]*Sqrt[(c*(e + f*x^2))/(e*(c + d*x^2))])) + (b*e^(3/2)*Sqrt[c + d*x^2]*EllipticPi[1 - (b*e)/(a*f), Ar
cTan[(Sqrt[f]*x)/Sqrt[e]], 1 - (d*e)/(c*f)])/(a*c*(b*c - a*d)*Sqrt[f]*Sqrt[(e*(c + d*x^2))/(c*(e + f*x^2))]*Sq
rt[e + f*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.105186, antiderivative size = 209, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 32, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.094, Rules used = {541, 539, 411} \[ \frac{b e^{3/2} \sqrt{c+d x^2} \Pi \left (1-\frac{b e}{a f};\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right )|1-\frac{d e}{c f}\right )}{a c \sqrt{f} \sqrt{e+f x^2} (b c-a d) \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}}-\frac{\sqrt{d} \sqrt{e+f x^2} E\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{c f}{d e}\right )}{\sqrt{c} \sqrt{c+d x^2} (b c-a d) \sqrt{\frac{c \left (e+f x^2\right )}{e \left (c+d x^2\right )}}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[e + f*x^2]/((a + b*x^2)*(c + d*x^2)^(3/2)),x]

[Out]

-((Sqrt[d]*Sqrt[e + f*x^2]*EllipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (c*f)/(d*e)])/(Sqrt[c]*(b*c - a*d)*Sqrt[
c + d*x^2]*Sqrt[(c*(e + f*x^2))/(e*(c + d*x^2))])) + (b*e^(3/2)*Sqrt[c + d*x^2]*EllipticPi[1 - (b*e)/(a*f), Ar
cTan[(Sqrt[f]*x)/Sqrt[e]], 1 - (d*e)/(c*f)])/(a*c*(b*c - a*d)*Sqrt[f]*Sqrt[(e*(c + d*x^2))/(c*(e + f*x^2))]*Sq
rt[e + f*x^2])

Rule 541

Int[Sqrt[(e_) + (f_.)*(x_)^2]/(((a_) + (b_.)*(x_)^2)*((c_) + (d_.)*(x_)^2)^(3/2)), x_Symbol] :> Dist[b/(b*c -
a*d), Int[Sqrt[e + f*x^2]/((a + b*x^2)*Sqrt[c + d*x^2]), x], x] - Dist[d/(b*c - a*d), Int[Sqrt[e + f*x^2]/(c +
 d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && PosQ[d/c] && PosQ[f/e]

Rule 539

Int[Sqrt[(c_) + (d_.)*(x_)^2]/(((a_) + (b_.)*(x_)^2)*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[(c*Sqrt[e +
 f*x^2]*EllipticPi[1 - (b*c)/(a*d), ArcTan[Rt[d/c, 2]*x], 1 - (c*f)/(d*e)])/(a*e*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sq
rt[(c*(e + f*x^2))/(e*(c + d*x^2))]), x] /; FreeQ[{a, b, c, d, e, f}, x] && PosQ[d/c]

Rule 411

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticE[ArcTan
[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rubi steps

\begin{align*} \int \frac{\sqrt{e+f x^2}}{\left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}} \, dx &=\frac{b \int \frac{\sqrt{e+f x^2}}{\left (a+b x^2\right ) \sqrt{c+d x^2}} \, dx}{b c-a d}-\frac{d \int \frac{\sqrt{e+f x^2}}{\left (c+d x^2\right )^{3/2}} \, dx}{b c-a d}\\ &=-\frac{\sqrt{d} \sqrt{e+f x^2} E\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{c f}{d e}\right )}{\sqrt{c} (b c-a d) \sqrt{c+d x^2} \sqrt{\frac{c \left (e+f x^2\right )}{e \left (c+d x^2\right )}}}+\frac{b e^{3/2} \sqrt{c+d x^2} \Pi \left (1-\frac{b e}{a f};\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right )|1-\frac{d e}{c f}\right )}{a c (b c-a d) \sqrt{f} \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt{e+f x^2}}\\ \end{align*}

Mathematica [C]  time = 0.772547, size = 347, normalized size = 1.66 \[ \frac{\sqrt{\frac{d}{c}} \left (i a \sqrt{\frac{d x^2}{c}+1} \sqrt{\frac{f x^2}{e}+1} (c f-d e) \text{EllipticF}\left (i \sinh ^{-1}\left (x \sqrt{\frac{d}{c}}\right ),\frac{c f}{d e}\right )+i b c e \sqrt{\frac{d x^2}{c}+1} \sqrt{\frac{f x^2}{e}+1} \Pi \left (\frac{b c}{a d};i \sinh ^{-1}\left (\sqrt{\frac{d}{c}} x\right )|\frac{c f}{d e}\right )-i a c f \sqrt{\frac{d x^2}{c}+1} \sqrt{\frac{f x^2}{e}+1} \Pi \left (\frac{b c}{a d};i \sinh ^{-1}\left (\sqrt{\frac{d}{c}} x\right )|\frac{c f}{d e}\right )+i a d e \sqrt{\frac{d x^2}{c}+1} \sqrt{\frac{f x^2}{e}+1} E\left (i \sinh ^{-1}\left (\sqrt{\frac{d}{c}} x\right )|\frac{c f}{d e}\right )+a d e x \sqrt{\frac{d}{c}}+a d f x^3 \sqrt{\frac{d}{c}}\right )}{a d \sqrt{c+d x^2} \sqrt{e+f x^2} (a d-b c)} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[e + f*x^2]/((a + b*x^2)*(c + d*x^2)^(3/2)),x]

[Out]

(Sqrt[d/c]*(a*d*Sqrt[d/c]*e*x + a*d*Sqrt[d/c]*f*x^3 + I*a*d*e*Sqrt[1 + (d*x^2)/c]*Sqrt[1 + (f*x^2)/e]*Elliptic
E[I*ArcSinh[Sqrt[d/c]*x], (c*f)/(d*e)] + I*a*(-(d*e) + c*f)*Sqrt[1 + (d*x^2)/c]*Sqrt[1 + (f*x^2)/e]*EllipticF[
I*ArcSinh[Sqrt[d/c]*x], (c*f)/(d*e)] + I*b*c*e*Sqrt[1 + (d*x^2)/c]*Sqrt[1 + (f*x^2)/e]*EllipticPi[(b*c)/(a*d),
 I*ArcSinh[Sqrt[d/c]*x], (c*f)/(d*e)] - I*a*c*f*Sqrt[1 + (d*x^2)/c]*Sqrt[1 + (f*x^2)/e]*EllipticPi[(b*c)/(a*d)
, I*ArcSinh[Sqrt[d/c]*x], (c*f)/(d*e)]))/(a*d*(-(b*c) + a*d)*Sqrt[c + d*x^2]*Sqrt[e + f*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.024, size = 390, normalized size = 1.9 \begin{align*}{\frac{1}{ac \left ( ad-bc \right ) \left ( df{x}^{4}+cf{x}^{2}+de{x}^{2}+ce \right ) } \left ({x}^{3}adf\sqrt{-{\frac{d}{c}}}-{\it EllipticF} \left ( x\sqrt{-{\frac{d}{c}}},\sqrt{{\frac{cf}{de}}} \right ) acf\sqrt{{\frac{f{x}^{2}+e}{e}}}\sqrt{{\frac{d{x}^{2}+c}{c}}}+{\it EllipticF} \left ( x\sqrt{-{\frac{d}{c}}},\sqrt{{\frac{cf}{de}}} \right ) ade\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{f{x}^{2}+e}{e}}}-{\it EllipticE} \left ( x\sqrt{-{\frac{d}{c}}},\sqrt{{\frac{cf}{de}}} \right ) ade\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{f{x}^{2}+e}{e}}}+{\it EllipticPi} \left ( x\sqrt{-{\frac{d}{c}}},{\frac{bc}{ad}},{\sqrt{-{\frac{f}{e}}}{\frac{1}{\sqrt{-{\frac{d}{c}}}}}} \right ) acf\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{f{x}^{2}+e}{e}}}-{\it EllipticPi} \left ( x\sqrt{-{\frac{d}{c}}},{\frac{bc}{ad}},{\sqrt{-{\frac{f}{e}}}{\frac{1}{\sqrt{-{\frac{d}{c}}}}}} \right ) bce\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{f{x}^{2}+e}{e}}}+xade\sqrt{-{\frac{d}{c}}} \right ) \sqrt{d{x}^{2}+c}\sqrt{f{x}^{2}+e}{\frac{1}{\sqrt{-{\frac{d}{c}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f*x^2+e)^(1/2)/(b*x^2+a)/(d*x^2+c)^(3/2),x)

[Out]

(x^3*a*d*f*(-d/c)^(1/2)-EllipticF(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*a*c*f*((f*x^2+e)/e)^(1/2)*((d*x^2+c)/c)^(1/2
)+EllipticF(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*a*d*e*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)-EllipticE(x*(-d/c)^(
1/2),(c*f/d/e)^(1/2))*a*d*e*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)+EllipticPi(x*(-d/c)^(1/2),b*c/a/d,(-f/e)^(
1/2)/(-d/c)^(1/2))*a*c*f*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)-EllipticPi(x*(-d/c)^(1/2),b*c/a/d,(-f/e)^(1/2
)/(-d/c)^(1/2))*b*c*e*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)+x*a*d*e*(-d/c)^(1/2))*(d*x^2+c)^(1/2)*(f*x^2+e)^
(1/2)/a/c/(-d/c)^(1/2)/(a*d-b*c)/(d*f*x^4+c*f*x^2+d*e*x^2+c*e)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{f x^{2} + e}}{{\left (b x^{2} + a\right )}{\left (d x^{2} + c\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^2+e)^(1/2)/(b*x^2+a)/(d*x^2+c)^(3/2),x, algorithm="maxima")

[Out]

integrate(sqrt(f*x^2 + e)/((b*x^2 + a)*(d*x^2 + c)^(3/2)), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^2+e)^(1/2)/(b*x^2+a)/(d*x^2+c)^(3/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{e + f x^{2}}}{\left (a + b x^{2}\right ) \left (c + d x^{2}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x**2+e)**(1/2)/(b*x**2+a)/(d*x**2+c)**(3/2),x)

[Out]

Integral(sqrt(e + f*x**2)/((a + b*x**2)*(c + d*x**2)**(3/2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{f x^{2} + e}}{{\left (b x^{2} + a\right )}{\left (d x^{2} + c\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^2+e)^(1/2)/(b*x^2+a)/(d*x^2+c)^(3/2),x, algorithm="giac")

[Out]

integrate(sqrt(f*x^2 + e)/((b*x^2 + a)*(d*x^2 + c)^(3/2)), x)